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Introduction
Graphs provide a formalism to represent dyadic in-
teractions occurring in real-life networks - for in-
stance, online social networks, such as Facebook,
can be represented as networks with links cor-
responding to friendship on Facebook. Hyper-
graphs generalise graphs by allowing edges of dif-
ferent cardinalities. Hypergraphs can represent
complex interactions, such as co-authorship hyper-
networks. We generalize existing contagion models
on 2-simplicial complexes to higher orders.

Definition: Hypergraphs

Hypergraphs are mathematical structures, intro-
duced by the mathematician Claude Berge in the
1970s, that generalise graphs in the sense that an
edge can have any number of vertices. Formally,
a hypergraph H is a pair H = (V,E), where V is a
set of vertices and E is a set of non-empty subsets
of V called hyperedges.

Definition: Simplicial complex

Simplicial complexes are a particular type of hyper-
graphs: if a hyperedge σ is present then all the sub-
simplices v ⊂ σ are also contained in E. By conven-
tion, an ω-simplex contains ω + 1 nodes.

Interest

Generalisations of SIS models to hypergraphs are
interesting because both theoretical analyses and
numerical simulations show the emergence of a dis-
continuous transition induced by higher-order in-
teractions. The analysis showing the possibility of a
discontinuous transition is realised (for 2-simplicial
complexes only) via the microscopic Markov chain
approach (MMCA) in [MGA20]. We show that
the analysis carries to higher-orders, which doesn’t
seem to appear anywhere in the literature. Higher-
order interactions also lead to the appearance of
a bi-stable region where both susceptible and in-
fectious asymptotic states co-exist. The asymptotic
state depends on the the initial proportion of in-
fectious nodes - a critical mass is needed to reach
the endemic state. This was demonstrated for 2-
simplicial complexes in [IPBL19]. We conducted
simulations on 3-simplicial complexes and showed
that one can obtain tri-stable regions as well as the
bi-stable region.

SIS model

In the classical SIS model on a connected undirected
graph, the vertices represent individuals who are
either infectious (I) or susceptible (S) [Luc13]. To
each vertices, we assign a binary value from the set
{0, 1} - 0 model susceptible individuals, and 1 mod-
els infectious individuals. We let si(t) ∈ {0, 1} rep-
resent the state of individual i at time t. The in-
fection propagates, through pairwise interactions,
from infectious individual to susceptible individu-
als with probability βS1 (we use S1 to indicate that
we consider 1-simplicial complexes), and infectious
nodes recover with probability µ. For 2-simplicial
complexes, we can consider as well triangular in-
teractions as in [MGA20]. We extend the model to
higher-order simplicial complexes: nodes also inter-
acts within the ω-simplices with the ω neighbours at
unison, with an infection probability βSω

.

MMCA equations

One can define a system of discrete-time MMCA
equations to describe the evolution over time of the
probability pi of node i being infectious at time t as:

pi(t+ 1) = (1− pi(t))(1−
D∏

ω=1

qSω
i (t)) + pi(t)(1− µ)

qSω
i (t) denotes the probability that node i is not in-

fected by any ω simplex it participates in. If node i is
infectious it will recover with probability µ. Other-
wise the node is susceptible and could get infected
through interaction in ω-simplices it takes part in.
The probability that the node will become infectious
is (1 − qS1

i (t) . . . qSD
i (t)). Indeed, the node is not

infected if it’s not infected through any ω-simplex.
The probability that node i is not infected by pair-
wise relations is:

qS1
i (t) =

∏
j∈S1

(1− βS1
pj(t))

where S1 is the set of neighbours (via links) of node
i. Similarly, the probability that node i is not in-
fected by any ω-simplex interaction is:

qSω
i (t) =

∏
n1,...,nω∈Sω

(1− βSω
pn1

(t) . . . pnω
(t))

where Sω is the set of ω-simplices (from which we
exclude i) containing node i.

Expanding the MMCA equations

Expanding the MMCA equations up to second or-
der in p, and developing the equation at the station-
ary state, we arrive at:

0 ≈ (1−p)
[
kS1βS1p+

(
kS2βS2 − β2

S1

(
kS1

2

))
p2
]
−µp

Simplicial Contagion Model (SCM): Mean Field

One can write a MF expression for the temporal
evolution of the density of infectious nodes ρ(t):

dtρ(t) = −µρ(t) +
D∑

ω=1

βSω
〈kSω
〉ρω(t)[1− ρ(t)]

where, for each ω = 1, . . . , D, 〈kSω
〉 is the average

number of ω-simplices incident to a node. To de-
rive this equation, we note that infectious nodes be-
come susceptible with rate per unit time µ, and the
susceptible nodes (their density is (1− ρ(t))) can be
infected by any simplices, ranging from links to D-
simplices. Contagion happens through a ω-simplex,
by definition with rate βSω , if and only if all other
nodes are infectious, hence the term ρω(t) [IPBL19].

Expanding the MF equations for D = 2

We can expand the caseD = 2 and solve dtρ(t) = 0 -
the steady state equation. This has three acceptable
solutions in the range [0, 1]. The solution ρ∗1 = 0 cor-
responds to the usual absorbing epidemic-free state,
in which all the individuals recover and the spread-
ing dies. The two other solutions are:

ρ∗2± =
λS2
− λS1

±
√

(λS2 − λS1)
2 − 4λS2(1− λS1)

2λS2

where λSj
:= βSj

〈kSj
〉/µ, j = 1, 2 [IPBL19].

Expanding the MF equations for D = 4

For 〈kS1〉 ≈ 43, 〈kS2〉 ≈ 17, 〈kS3〉 ≈ 5 and 〈kS4〉 ≈ 1.
We use the re-scaled parameters λSj

= βSj
〈kSj
〉/µ

for j = 1, . . . , 4, with λS1
= 0.999, λS2

= 1.065,
λS3

= 0 and λS4
= 5. We get roots approximately

equal to ρ∗2 ≈ 0.02244, ρ∗3 ≈ 0.06978, ρ∗4 ≈ 0.17407
and ρ∗5 ≈ 0.73371, as well as the root ρ∗1 = 0. ρ∗1,
ρ∗3 as well as ρ∗5 are stable roots. We thus get a
tri-stable region when we allow contagions on pen-
tagons, squares, triangles and links.

Synthetic hypergraphs

It is possible to construct random simplicial mod-
els of dimension D via the Random Simplicial
Complexes (RSC) model. It has D + 1 parame-
ters, the number of vertices N and D probabilities
{p1, . . . , pD}, with pω ∈ [0, 1] to control the cre-
ation of ω-simplices up to dimension D [IPBL19]. It
is a direct generalisation of the Erdös-Rényi model
for random graphs. When we want to create D-
simplicial complexes with targets for the average
degree 〈kS1〉 and the average number of ω-simplices
〈kSω 〉 any node participates in, we use:

pi =
〈kSi
〉 − (i+ 1)〈kS2

〉(
N−1

i

)
− (i+ 1)〈kS2

〉
, for 1 ≤ i < D (1)

pD =
〈kSD

〉(
N−1
D

) (2)

Example on 2-simplicial complexes

SCM on a RSC with 〈kS1
〉 ≈ 23, 〈kS2

〉 ≈ 7 and
µ = 0.06. We plot ρ∗ against λS1 for different val-
ues of λS2 . We observe a discontinuous transition at
a value approximately equal to λc = 2

√
λS2
− λS2

when λS2
= 2.5.
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