Raphaél Pellegrin, Gaél Ancel, Tale Lokvenec - AM205: Professor Rycroft and Professor Kuang

Introduction

Graphs provide a formalism to represent dyadic in-
teractions occurring in real-life networks - for in-
stance, online social networks, such as Facebook,
can be represented as networks with links cor-
responding to friendship on Facebook. Hyper-
graphs generalise graphs by allowing edges ot dit-
ferent cardinalities. Hypergraphs can represent
complex interactions, such as co-authorship hyper-
networks. We generalize existing contagion models
on 2-simplicial complexes to higher orders.

Definition: Hypergraphs

Hypergraphs are mathematical structures, intro-
duced by the mathematician Claude Berge in the
1970s, that generalise graphs in the sense that an
edge can have any number of vertices. Formally,
a hypergraph H is a pair H = (V, E), where V is a
set of vertices and E is a set of non-empty subsets
of V called hyperedges.

Definition: Simplicial complex

Simplicial complexes are a particular type of hyper-
graphs: if a hyperedge o is present then all the sub-
simplices v C o are also contained in E. By conven-
tion, an w-simplex contains w + 1 nodes.

Interest

Generalisations of SIS models to hypergraphs are
interesting because both theoretical analyses and
numerical simulations show the emergence of a dis-
continuous transition induced by higher-order in-
teractions. The analysis showing the possibility of a
discontinuous transition is realised (for 2-simplicial
complexes only) via the microscopic Markov chain
approach (MMCA) in [MGA20]. We show that
the analysis carries to higher-orders, which doesn’t
seem to appear anywhere in the literature. Higher-
order interactions also lead to the appearance of
a bi-stable region where both susceptible and in-
fectious asymptotic states co-exist. The asymptotic
state depends on the the initial proportion of in-
fectious nodes - a critical mass is needed to reach
the endemic state. This was demonstrated for 2-
simplicial complexes in [IPBL19]. We conducted
simulations on 3-simplicial complexes and showed
that one can obtain tri-stable regions as well as the
bi-stable region.

Epidemic spreading on hypergraphs

SIS model

In the classical SIS model on a connected undirected
graph, the vertices represent individuals who are
either infectious (I) or susceptible (S) [Lucl3]. To
each vertices, we assign a binary value from the set
{0, 1} - 0 model susceptible individuals, and 1 mod-
els infectious individuals. We let s;(t) € {0,1} rep-
resent the state of individual ¢ at time ¢. The in-
fection propagates, through pairwise interactions,
from infectious individual to susceptible individu-
als with probability 8g, (we use S; to indicate that
we consider 1-simplicial complexes), and infectious
nodes recover with probability p. For 2-simplicial
complexes, we can consider as well triangular in-
teractions as in [MGA20]. We extend the model to
higher-order simplicial complexes: nodes also inter-
acts within the w-simplices with the w neighbours at
unison, with an infection probability Sg .

MMCA equations

One can define a system of discrete-time MMCA
equations to describe the evolution over time of the
probability p; of node ¢ being infectious at time ¢ as:
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¢’* (t) denotes the probability that node i is not in-
fected by any w simplex it participates in. If node 7 is
infectious it will recover with probability p. Other-
wise the node is susceptible and could get infected
through interaction in w-simplices it takes part in.
The probability that the node will become infectious
is (1 — ¢”'(t)...q°"(t)). Indeed, the node is not
infected if it’s not infected through any w-simplex.
The probability that node 1 is not infected by pair-
wise relations is:

pi(t+1) = (1 = pi(?) ) +pi(t)(1 — p)
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where 5] is the set of neighbours (via links) of node
i. Similarly, the probability that node 7 is not in-
fected by any w-simplex interaction is:
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where S, is the set of w-simplices (from which we
exclude 7) containing node .

Expanding the MMCA equations

Expanding the MMCA equations up to second or-
der in p, and developing the equation at the station-
ary state, we arrive at:
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Simplicial Contagion Model (SCM): Mean Field

One can write a MF expression for the temporal
evolution of the density of infectious nodes p(t):
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where, for each w = 1,...,D, (kg_) is the average
number of w-simplices incident to a node. To de-
rive this equation, we note that infectious nodes be-
come susceptible with rate per unit time p, and the
susceptible nodes (their density is (1 — p(?))) can be
infected by any simplices, ranging from links to D-
simplices. Contagion happens through a w-simplex,
by definition with rate Sg_, if and only if all other
nodes are infectious, hence the term p“(¢) [[PBL19].
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Expanding the MF equations for D = 2

We can expand the case D = 2 and solve d;p(t) = 0 -
the steady state equation. This has three acceptable
solutions in the range |0, 1|. The solution p; = 0 cor-
responds to the usual absorbing epidemic-free state,
in which all the individuals recover and the spread-
ing dies. The two other solutions are:
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where )\5 — 553. </~csj>/,u,j a 1, 2 [IPBL19].

Expanding the MF equations for D = 4

For (kg,) =~ 43, (ks,) ~ 17, (ks,) =~ 5 and (kg,) =~ 1.
We use the re-scaled parameters s, = Bs,(ks;)/ 1
for j = 1,...,4, with Ag;, = 0.999, A\g, = 1.065,
As, = 0 and A\g, = 5. We get roots approximately
equal to p3 ~ 0.02244, p5 ~ 0.06978, p; ~ 0.17407
and p: ~ 0.73371, as well as the root p; = 0. pj7,
p5 as well as pi are stable roots. We thus get a
tri-stable region when we allow contagions on pen-
tagons, squares, triangles and links.
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Synthetic hypergraphs

It is possible to construct random simplicial mod-
els of dimension D via the Random Simplicial
Complexes (RSC) model. It has D + 1 parame-
ters, the number of vertices N and D probabilities
{p1,...,pp}, with p, € [0,1] to control the cre-
ation of w-simplices up to dimension D [IPBL19]. It
is a direct generalisation of the Erdds-Rényi model
for random graphs. When we want to create D-
simplicial complexes with targets for the average
degree (kg,) and the average number of w-simplices
(ks_ ) any node participates in, we use:
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Example on 2-simplicial complexes
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SCM on a RSC with (kg,) ~ 23, (ks,) =~ 7 and
pn = 0.06. We plot p* against \g, for different val-
ues of Ag,. We observe a discontinuous transition at
a value approximately equal to \° = 2,/Ag, — Ag,
when \g, = 2.5.
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