Introduction to tropical geometry Toward a tropical Nullstellensatz

Raphaël Pellegrin under the supervision of Marianne Akian and Stéphane Gaubert

École Polytechnique & the French Institute for Research in Computer Science and Automation (INRIA)

October 10, 2018

Overview

Introduction to tropical geometry
The tropical semi-field
Tropical polynomials

Grigoriev and Podolskii's tropical Nullstellensatz

Mean payoff games

References

Tropical?

The foundations of tropical mathematics were laid in the 1960s by Cuninghame-Green and Vorobyev. They were named in honour of Imre Simon who lived and worked in Sao Paulo.

In tropical geometry, we consider the max-plus semi-field \mathbb{R}_{max} , the set $\mathbb{R} \cup \{-\infty\}$ with the two operations, $x \oplus y = max\{x,y\}$ and $x \odot y = x + y$.

For instance $3 \oplus 5 = 5$, $3 \odot 5 = 3 + 5 = 8$, $2^{\odot 3} = 2 \times 3 = 6$.

We sometimes use quotation marks to denote operations in the tropical world: "3 + 3 = 3", " $\sqrt{-1}$ = -0.5"

We denote $\overrightarrow{x} = (x_1, ..., x_n)$ and for $I = (i_1, ..., i_n)$ we introduce the notation $\overrightarrow{x}^I = x_1^{\odot i_1} \odot ... \odot x_n^{\odot i_n} = i_1 x_1 + ... + i_n x_n$.

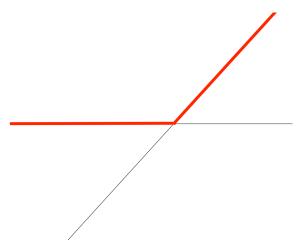
Tropical monomial in variables $\overrightarrow{x} = (x_1, ..., x_n)$: $m(\overrightarrow{x}) = c \odot x_1^{\odot i_1} \odot ... \odot x_n^{\odot i_n}$ where all exponents are non-negative integers. In classical terms, $m(\overrightarrow{x}) = c + \langle i, x \rangle$ is an affine function with non-negative integer slope.

Tropical polynomial: " $\sum_{i=1}^{n} M_i(\overrightarrow{x})$ " = $\max_i M_i(\overrightarrow{x})$ each $M_i(\overrightarrow{x})$ is a tropical monomial in variables $\overrightarrow{x} = (x_1, ..., x_n)$

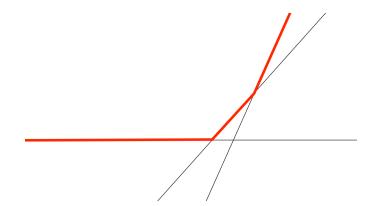
Definition

The degree of a tropical monomial is the sum of its exponents. The degree of a tropical polynomial f, deg(f), is the maximal degree of its monomials.

In one variable: let us look at $P_1(x) = 0 + x$



... and at
$$P_2(x) = 0 + x + (-1)x^2 = (-1)(x+0)(x+1)$$



In one variable: Tropical roots of the polynomial P(x): points x_0 at which the graph P(x) has a corner at x_0 .

The tropical semi-field is algebraically closed. In other words every tropical polynomial of degree d has exactly d roots when counted with multiplicities.

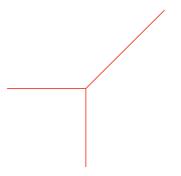
In two variables: $P(x, y) = \sum_{i,j} a_{i,j} x^i y^{j} = \max_{i,j} (a_{i,j} + ix + jy)$.

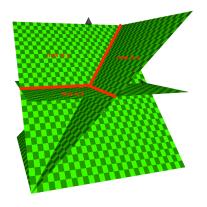
The tropical curve C defined by P(x,y) is defined as the corner locus of this function (ie all the points for which the maximum of P(x,y) is attained at least twice).

$$P(x,y) = \sum_{i,j} a_{i,j} x^i y^{j} = \max_{i,j} (a_{i,j} + ix + jy)$$

C is the set of points (x_0, y_0) of \mathbb{R}^2 such that there exists pairs $(i,j) \neq (k,l)$ satisfying $P(x_0, y_0) = a_{i,j} + ix_0 + jy_0 = a_{k,l} + kx_0 + ly_0$

Example:
$$P(x, y) = 0 + x + y = max(0, x, y)$$
. We look at $x = 0 \ge y$, $y = 0 \ge x$, $x = y \ge 0$:





The tropical semi-field arises naturally as the limit of the classical semi-field $(\mathbb{R}_+,+,\times)$ (Victor Maslov's dequantisation of the real numbers). [BS14, I08]

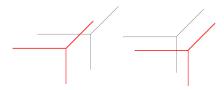
This bijection induces a semi-field structure on \mathbb{R}_{max} with the operations:

- $"x +_t y" = log_t(t^x + t^y)$
- $"x \times_t y" = log_t(t^x t^y) = x + y$

- $"x +_t y" = log_t(t^x + t^y)$
- $"x \times_t y" = log_t(t^x t^y) = x + y$
- ▶ Classical addition corresponds to an exotic kind of multiplication on \mathbb{R}_{max} .
- ▶ If we let t tend to infinity, the operation " $+_t$ " tends to the tropical addition "+".

Many ideas for the classical world generalize to the tropical world:

▶ Two lines meet in a point



- Bézout theorem
- ► Two general points lie on a unique line, five general points lie on a unique quadric, etc...

Grigoriev and Podolskii's tropical Nullstellensatz

Definition

 $\overrightarrow{a} \in K^n$ is a root of a polynomial f if the maximum is either attained on at least two different monomials, or is infinite.

Grigoriev and Podolskii's tropical Nullstellensatz

The tropical homogeneous linear system

$$max_{1 \leq j \leq n} \{a_{ij} + x_j\}$$
 , $1 \leq i \leq m$

can be naturally associated with its matrix $A \in \mathbb{R}_{max}^{m \times n}$. We will also use a matrix notation $A \odot \overrightarrow{x}$ for such systems.

Grigoriev and Podolskii's tropical Nullstellensatz

Theorem

(Tropical Dual Nullstellensatz) Consider a system of tropical polynomials $F = \{f_1, ..., f_k\}$ in n variables. Denote by d_i the degree of the polynomial f_i and let $d = \max_i d_i$. Then over the semiring $\mathbb R$ the system F has a root if and only if the Macauley tropical linear system $M_N \odot \overrightarrow{y}$ for $N = (n+2)(\sum_{j=1}^k d_j)$ has a solution. [GP18]

Mean payoff games

Is a family of vectors tropically dependent?

I.e: Given $m \ge n$ and an $m \times n$ matrix $A = (A_{ij})$ with entries in $\mathbb{R} \cup \{\infty\}$, are the columns of A tropically linearly dependent?

l.e., can we find scalars $x_1, ..., x_n \in \mathbb{R} \cup \{-\infty\}$, not all equal to $-\infty$, such that the equation "Ax = 0" holds in the tropical sense, meaning that for every value of $i \in [m]$, when evaluating the expression $max(A_{ij} + x_j)j \in [n]$ the maximum is attained by at least two values of j?

We use Mean Payoff Games (MPG).

References

- AGG12 [AGG12] M. Akian, S. Gaubert, and A. Guterman. Tropical polyhedra are equivalent to mean payoff games. International Journal of Algebra and Computation, 22(1):125001 (43 pages), 2012.
- AGK10 [AGK10] X. Allamigeon, S. Gaubert, and R. Katz. Tropical polar cones, hypergraph transversals, and mean payoff games. Linear Algebra and its Applications, 435(7):1549-1574, 2011.
 - BS14 [BS14] E. Brugallé, K. Shaw. A bit of tropical geometry. The American Mathematical Monthly Volume 121, Number 7, pp 563-589, 2014.
 - GP18 [GP18] D. Grigoriev and V. V. Podolskii, Tropical Effective Primary and Dual Nullstellensätze, Discrete & Computational Geometry, Volume 59, Issue 3, pp 507-552, 2018.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

- [108] [108] I. Itenberg, Introduction à la géometrie tropicale, Available from: http://www.math.polytechnique.fr/xups/xups08-01.pdf
 - [Accessed 18th July 2018]