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Grobner bases: motivation

The algebra of the polynomial rings k[xi, ..., x,] and the geometry
of affine algebraic varieties are linked. Grobner bases allow us to
solve problems about polynomial ideals in an algorithmic fashion

[1]



Grobner bases: motivation

Problems concerning the algebra of polynomial ideals and the
geometry of affine varieties:

» The ideal membership problem: given f € k[x, ..., xp] and an
ideal I = (f1,...,f), determine if f € |. Closely related to
determining whether V(f1, ..., fs) lies on the variety V(f).

» The problem of solving polynomial equations: find all
common solutions in k" of a system of polynomial equations
f(x1,...,xn) == f(x1,...,%,) = 0. This is the same as
asking for the points in the affine variety V(f1,...,f).



Grobner bases: history

Grobner bases were developed by Bruno Buchberger in 1965 in his
PhD. thesis. He developed this theory throughout his career. He
named these objects after his advisor Wolfgang Grobner [2].



Monomial orderings

We need a way to order monomials. For example, in dividing
f(x) = x> —3x% + 1 by g(x) = x? — 4x + 7 by the Euclidean
algorithm, we:
> Write the terms in the polynomials in decreasing order by
degree in x.

» The leading term in f is x> = x3 - (leading term in g). Thus,
subtract x3g(x) from f to cancel the leading term.

» Repeat the same process on f(x) — x3 - g(x), etc., until we

obtain a polynomial of degree less than 2.



Monomial orderings

For the division algorithm on polynomials in one variable, we are
dealing with the degree ordering on the one-variable monomials:

> XTI XM s s x> x> 1

The success of the algorithm depends on working systematically
with the leading terms in f and g, and not removing terms “at
random” from f using arbitrary terms from g.



Monomial orderings

A major component of any extension of division to arbitrary
polynomials in several variables will be an ordering on the terms in
polynomials in k[x1, ..., x,]. There are different ways to define
orderings on monomials (or equivalently ZZ,).



Monomial orderings

Definition
A total ordering satisfies:
» the ordering is a partial ordering (transitive, antisymmetric,
reflexive)

» for every pair of monomials x® and x? , exactly one of the
three statements x® > x?, x* = x#, x# > x should be true



Monomial orderings

We must take into account the effect of the sum and product
operations on polynomials.
Definition (Monomial ordering)

A monomial ordering > on k[xi,...,x,] is a relation > on the set
of monomials x%, o € Z%, , satisfying:

> > is a total (or linear) ordering on ZZ%.
» Ifa>pand vy €Zl;, thena+vy>B+7.

» > is a well-ordering on ZZ,. This means that every nonempty
subset of ZZ, has a smallest element under >.



Monomial orderings

Definition (Lexicographic Order)

Let a = (a1,...,an) and 8= (B1,...,8s) be in ZL,. We say

a >ex O if the leftmost nonzero entry of the vector difference

a — B € Z" is positive. We will write x® > o xP if & >jox 3. This
is a monomial ordering.



Monomial orderings

Definition (Graded Lex Order)

Let o, B € Z%,. We say a >gpex 3 if

lal =YL ai > [B] = X1 Bi or |a] = |B] and a > e B. This is
a monomial ordering.

We see that grlex orders by total degree first, then “break ties”
using lex order.



Monomial orderings

Examples:
> (3,2,4) > (3,2,1) since a — 3 = (0,0, 3).
1,2,3) >grex (3,2,0) since (1,2,3)] =6 > [(3,2,0)| = 5.
)
)

(
> (1,2,4) >gnex (1,1,5) since |(1,2,4)] = |(1,1,5)| and
(1,2,4 > Jex (1, 1,5).

>



Monomial orderings

Definition
Let f =) anx® be a nonzero polynomial in k[x1,...,x,] and let
> be a monomial order.

» The multidegree of f is:
multideg(f) = max{a € Z%j : aq # 0}

(the maximum is taken with respect to >).
> The leading coefficient of f is LC(f) = apmurideg () € k-
» The leading monomial of f is LM(f) = x™u/tideg(f) (with
coefficient 1).
» The leading term of fis: LT(f) = LC(f) LM(f).



Monomial orderings

To illustrate, let f = 4xy?z + 42> — 5x3 4 7x%z? as before and let
> denote lex order. Then multideg(f) = (3,0,0), LC(f) = -5,
LM(f) = x3, LT(f) = —5x5.



The division algorithm in k[xq, ..., x,]

The goal is to divide f € k[x1,...,xn] by fi,....fs € k[x1,...,Xn].
As we will see, this means expressing f in the form

f=qih+ -4 gsfs + r, where the “quotients” ¢i,...,qgs and
remainder r lie in k[x1,...,xp]. This is where we will use the
monomial orderings introduced previously.



The division algorithm in k[xq, ..., x,]

The basic idea of the algorithm is the same as in the one-variable
case:

We want to cancel the leading term of f by multiplying some f; by
an appropriate monomial and subtracting.

Let us first work through some examples to see what is involved.



The division algorithm in k[xq, ..., x,]

Let us divide f = x?y +xy> +y’ by f=xy —land h=y? —1,
using the lex order with x > y. The first two give us the following
partially completed division:

XCy+xy?+y? [ xy—1,y2 -1
xy? +x+y? x
x+y2+y x+y




The division algorithm in k[xq, ..., x,]

Xy +xy?+y? [ xy -1,y -1
Xy2 +x+ y2 X
x+y*+y x+y
Note that neither LT(f1) = xy nor LT(f;) = y? divides

LT(x + y? +y) = x. However, x + y? 4 y is not the remainder
since LT () divides y2.




The division algorithm in k[xq, ..., x,]

X2y +xy>+y? | xy —1,y> —1 remainder

Y24y x+y x
y+1 x+y,1 X
0 x+y,1 x+y+1

Thus, the remainder is x + y + 1, and we obtain
Xy +x2 4+ =(x+y)xy -1 +1- (> —1)+x+y+1

The remainder is a sum of monomials, none of which is divisible by
the leading terms LT(f;) or LT(%).



The division algorithm in k[xq, ..., x,]

The division algorithm is not a perfect generalisation of its
univariate version.

In fact, the algorithm achieves its full potential only when coupled
with the Grobner bases [2].



The division algorithm in k[xq, ..., x,]

Important property of the division algorithm in k[x]: the remainder
is uniquely determined.

This can fail when there is more than one variable. Let us divide
f=x?y+xy>+y2by i =y? —1and f, = xy—1. We will use lex
order with x > y. This is the same as the previous example, except
that we have changed the order of the divisors.



The division algorithm in k[xq, ..., x,]

The remainder is different from what we got previously.
XCy+xy2+y2=1-(* -+ (x+y)xy—1)+x+y+1 (1)

Xy +x2 4y = (x+1)- (-1 +x-(y—1)+2x+1 (2)

The remainder is not uniquely characterised by the requirement
that none of its terms be divisible by LT(f),...,LT(f).



The division algorithm in k[xq, ..., x,]

One nice feature of the division algorithm in k[x] is the way it
solves the ideal membership problem.

Do we get something similar in the multivariate case?



The division algorithm in k[xq, ..., x,]

Let i = y?> — 1, hh = xy + 1 € k[x, y] with the lexicographic order.
Dividing f = x%y +2xy? +y by F = (f1, f2), the result is
Py + 27 +y=2x-(y* = 1) +x-(xy+1)+x+y
With F = (f, f1), however, we have
Xy + 202 +y = (x+2) (v +1) —x—y
However:
Py + 2%ty =(x+y) (v +1)+x (1)

The third calculation shows that f € (fi, f»). However, it is still
possible to obtain a nonzero remainder on division by F = (f, f2)
and F' = (f, f1).



Grobner bases

Definition (Monomial ideal)

An ideal | C k[xi,...,xp] is a monomial ideal if there is a subset
A C Z%, (possibly infinite) such that / consists of all polynomials
which are finite sums of the form ZaeA hox®, where

ha € klx1,. .., Xa].

In this case, we write | = (x* : a € A).



Grobner bases

Theorem
Let | = (x*: o € A)be a monomial ideal. Then a monomial x°
lies in I if and only if x® is divisible by x* for some o € A.



Grobner bases

Theorem (Dickson's Lemma)

Let | = (x*:a € A) C k[x1,...,xn be a monomial ideal. Then |
can be written in the form | = (x*(1) ... x*()) where

a(l),...,a(s) € A. In particular, | has a finite basis.



Grobner bases

Definition
Let I C k[x1,...,xn] be an ideal other than {0}, and fix a
monomial ordering on k[xi,...,x,|. Then:

» We denote by LT(/) the set of leading terms of nonzero
elements of /. Thus,

LT(/) = {cx® : there exists f € I\{0} with LT(f) = cx®}

» We denote by (LT(/)) the ideal generated by the elements of
LT(1).



Grobner bases

Theorem
Let | C k[x1,...,xn] be an ideal different from 0.

» (LT(/)) is a monomial ideal.

> There are g1,...,8+ € | such that
(LT(1)) = (LT(g1),---,LT(g¢))-



Grobner bases

Definition (Grobner basis)

Fix a monomial order on the polynomial ring k[xi, ..., xp]. A finite
subset G = {gi1,..., gt} of anideal | C k[xi, ..., x,] different from
{0} is said to be a Grobner basis (or standard basis) if
(LT(g1),...,LT(gt)) = (LT(/)). Using the convention that

(0) = {0}, we define the empty set () to be the Grobner basis of
the zero ideal {0}.

Equivalently, a set {g1,...,8:} C I is a Grobner basis of / if and
only if the leading term of any element of / is divisible by one of
the LT(g)).



Grobner bases

Theorem (Division with Grobner bases)
Let | C k[x1,...,xn] be an ideal and let G = {g1,...,gt} be a

Grébner basis for |. Then given f € k[xi,...,xp|, there is a unique
r € k[xi, ..., xn] with the following two properties:
» No term of r is divisible by any of LT(g1), ..., LT(gt).

> Thereis g € | such that f =g+ r.

In particular, r is the remainder on division of f by G no matter
how the elements of G are listed when using the division algorithm.



Grobner bases

Definition -
We will write f* for the remainder on division of f by the ordered
s-tuple F = (fi,...,f).

If Fis a Grobner basis for (f1, ..., fs), then we can regard F as a
set (without any particular order) by our previous results.

For instance, with F = (x?y — y?, x*y? — y?) C k|x, y], using the

lex order, we have x5y = xy3 since the division algorithm yields
Xy = (3 +xy)(xy = y?) +0- (x*y? = y?) + xy°.



Grobner bases

To study cancellation phenomenons, we introduce the following
special combinations.
Definition
Let f,g € k[x1,...,xn| be nonzero polynomials.
> If multideg(f) = o and multideg(g) = /3, then let
v = (Y1,---,7n), where v; = max(«;, ;) for each i. We call
x7 the least common multiple of LM(f) and LM(g), written
x7 = lem(LM(f),LM(g)).
» The S-polynomial of f and g is defined to be the combination

f =

S8 = " e




Grobner bases

The S-polynomial S(f, g) has leading term that is guaranteed to
be strictly less than lem(LM(f), LM(g)).



Grobner bases

For example,let f = x3y? — x2y3 + x and g = 3x*y + y? in R[x, y]
with the grlex order.

Then v = (4,2) and
4.2 4.2 1

Xy Xy Yy
5(f,g)=XTyz'f—3X4y'gZX'f—g'gZ—X3y3+X2—§y

3




Grobner bases

Theorem (Buchberger's Criterion)

Let | be a polynomial ideal. Then a basis G = {g1,...,8:} of | is
a Grobner basis of | if and only if for all pairs i # j, the remainder
on division of 5(gj, g;) by G (listed in some order) is zero.



Buchberger's algorithm

Theorem (Buchberger's Algorithm)

Let | = (f,...,fs) # 0 be a polynomial ideal. Then a Grébner
basis for | can be constructed in a finite number of steps by the
following algorithm:

Input : F = (f,...,fs)
Output : a Grébner basis G = (g1,...,8t) for |, with F C G
G:=F

REPEAT
G =G
FOR each pair {p,q}, p # q in G’ DO
G/
r:=5(p,q)
IFr 0 THEN G := G U {r}
UNTIL G = G’

RETURN G



Refinement of Buchberger's criterion and first improved
algorithm

We have a more general criterion to the one we presented before.

Theorem

A basis G = {gi1,...,8t} for an ideal | is a Grobner basis if and
only if 5(gi,gj) —¢c 0 for all i # j.

f reduces to zero modulo G, written f —¢ 0, if f has a standard
representation f = A1g1 + - - - + Atgt, Ack[x1,. .., xn], which
means that whenever A;g; # 0, we have

multideg(f) > multideg(Aigi).



Refinement of Buchberger's criterion and first improved
algorithm

Theorem

Given a finite set G C k[xi, ..., x|, suppose that we have f,

g € G such that the leading monomials of f and g are relatively
prime. Then S(f,g) —¢ 0.



Faugere's F4 algorithm

The information generated by several S-polynomial remainder
computations can be obtained simultaneously via row operations on
a suitable matrix - this was first noted by Daniel Lazard in the 80s.
This connection with linear algebra is the basis for Jean-Charles
Faugere's F4 algorithm, in which the goal is to compute S-pairs
and to reduce them simultaneously using linear algebra [3].



Faugere's F4 algorithm

The matrix in question is usually (very) sparse and we can use fast
reduction algorithm, such as GBLA (Grobner Bases Linear
Algebra), from Faugere and Sylvian Lachartre.



Signature based algorithms and Faugere's F5 algorithm

One of the features of the signature-based family of Grobner basis
algorithms is the systematic use of information indicating how the
polynomials generated in the course of the computation depend on
the original input polynomials f1,...,fs. The goal is to eliminate
unnecessary S-polynomial remainder calculations as much as
possible by exploiting relations between the f; [4].



Signature based algorithms and Faugere's F5 algorithm

ldea:

If I =(f1,...,fs) is any collection of polynomials, then the
S-polynomials and remainders produced in the course of a Grobner
basis computation can all be written as

(313---735)'(7‘—1,---,@):alfl—l--“—i—asfs

for certain a = (a1,...,as) in k[xi,...,xy]°. We will see that there
are key features of the vectors a corresponding to some
S-polynomials that make computing the S-polynomial remainder
unnecessary. Those key features can be recognised directly from
the largest term in the vector and other information known to the
algorithm. In particular, it is not necessary to compute the
combination a;fi + - - - + asfs to recognise that a key feature is
present.



Signature based algorithms and Faugere's F5 algorithm

Definition (Signature)

Let g = (g1,...,8s) € R®. Then the signature of g, denoted &(g),
is the term appearing in g that is largest in the >pp7 order.

POT order extending the order > on R:

xae,->porx6ej<:>i>j, ori:jandxo‘>xf3



Signature based algorithms and Faugere's F5 algorithm

Consider i = x>+ xy and f, = x> + y in Q[x, y], using the grevlex
order with x > y.

S(h,h)=(1,-1)- (A, ) =xy —y

Since that does not reduce to zero under {fi, f,}, we would include

e \uhl

3 =5S(f,hH) = xy — y as a new Grobner basis element.



Signature based algorithms and Faugere's F5 algorithm

S(fh, ) = yh —xfs =y —x(h — ) = (y — x)i + xf2

iR

S(fi, f3) v +y

This gives another Grobner basis element. Similarly:
S(h,h) =yh —xf3 = yh — x(h — h) = —xfi + (x + y)f2

AP
Sk R) P 22y



Signature based algorithms and Faugere's F5 algorithm

These two remainder calculations have led to precisely the same
result!

We could have predicted this.
S(h.B)=(y —x)h +xhb =a-(f, h)

The largest terms in the POT order are the same for a and b—in
both vectors, the largest term is the xe;.
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Thank you for listening!

Thank you for your attention!



Staircases

y‘k L] L]
x

Figure 1: The ideal | = <xy4,x3y3,X4y7X5>



Staircases

Figure 2: The ideal | = (x3, xy?z, xz°)



Staircases

lex(z,y) invlex(z,y) = lex(y,x) degrevlex(z,y)

Figure 3: The ideal | = (xy +x + y? + 1,x%y + xy? + 1)

1 3
G1Z{X—§y3+y2+§,y4—y3—3y—1}

Go={y*+xy +x+1,x* +x—1}
Gs={y —2y>—2x -3, x>+ x -1 xy+y*> +x+1}



Grobner basis

The coefficients of the elements of Grobner basis can be
significantly messier than the coefficients of the original generating
set. For example, for

| = (x> 4+ y? + 22 — xy,x’y?z + z,x%y + y?z + z), a Grobner basis
(with graded lexicographic order) is:

y3z2 4+ yz? — 7,
5_3 6,,2 1.2 2_ 43,1
Xyz® — 3y°zZ — 7y°z° — 72" — 5XZ + 7Yz,
3.,.1.3 1,22 1.4 1 2
Xi —1—35};z—l?y2z2—gz4—>1<z+§)5/z—z,2
yr—qylz+ Gyczt + 3727+ 5xz — 3yz + 227,
yz3+xz—yz—|—22,
2_ .3 2, _ 2
Xyc—y> +y‘z—yz: + 2z
x2—xy—|—y2+22




F4

F4 ALGORITHM
Input: F=(f,...,f)

Output: a Grobner basis G for | = (f1,...

G’ := REDUCTION(B', G)
FOR hin G’ DO
G:= GU{h}
k:=k+1
B:=BU{(i,k):1<i<k}
return G




F4

REDUCTION
Input: a set of pairs B’ and a current basis G
Output: a set G’ of new basis elements

L := sYMBOLICPREPROCESSING(B', G)

M := matrix with rows the polynomials in L

M’ := reduced row echelon form of M

L’ := polynomials corresponding to the rows of M’
G :={f e ' :LM(f) # LM(g) for any g € L}
RETURN G’




F4

SYMBOLICPREPROCESSING
Input: a set of pairs B’ and a current basis G
Output: a set L of polynomials

Left := {lem(LM(G;), LM(G;))/LT(G;) - G; : (i,j) € B’}
Right := {lem(LM(G), LM(G)))/ LT(G)) - G; : (i.J) € B'}
L := Left U Right
done := {LM(f) : f € L}
WHILE done # Mon(L) DO
m := largest monomial in (Mon(L) \ done)
done := done U{m}
IF LM(g) divides m for some g in G THEN
f := choose g such that LM(g) divides m
L:=LU{m/LM(f)-f}
RETURN L




POT order

If g = (x3,y,x + 2%) in Q[x,y, z]3, with >poT extending the
grevlex order with x > y > z, then &(g) = z°es.
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